Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
J Ginseng Res ; 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2289078

RESUMEN

Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

2.
Journal of ginseng research ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2058696

RESUMEN

Introduction Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19. Graphical Image 1

3.
Front Pharmacol ; 13: 857730, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1903107

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.

4.
Comb Chem High Throughput Screen ; 24(9): 1377-1394, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-902235

RESUMEN

OBJECTIVE: Shufeng Jiedu capsule (SFJDC) is a well-known Chinese patent drug that is recommended as a basic prescription and applied widely in the clinical treatment of COVID-19. However, the exact molecular mechanism of SFJDC remains unclear. The present study aims to determine the potential pharmacological mechanisms of SFJDC in the treatment of COVID-19 based on network pharmacology. METHODS: The network pharmacology-based strategy includes collection and analysis of active compounds and target genes, network construction, identification of key compounds and hub target genes, KEGG and GO enrichment, recognition and analysis of main modules, as well as molecule docking. RESULTS: A total of 214 active chemical compounds and 339 target genes of SFJDC were collected. Of note, 5 key compounds (ß -sitosterol, luteolin, kaempferol, quercetin, and stigmasterol) and 10 hub target genes (TP53, AKT1, NCOA1, EGFR, PRKCA, ANXA1, CTNNB1, NCOA2, RELA and FOS) were identified based on network analysis. The hub target genes mainly enriched in pathways including MAPK signaling pathway, PI3K-Akt signaling pathway and cAMP signaling pathway, which could be the underlying pharmacological mechanisms of SFJDC for treating COVID-19. Moreover, the key compounds had high binding activity with three typical target proteins including ACE2, 2OFZ, and 1SSK. CONCLUSION: By network pharmacology analysis, SFJDC was found to effectively improve immune function and reduce inflammatory responses based on its key compounds, hub target genes, and the relevant pathways. These findings may provide valuable evidence for explaining how SFJDC exerting the therapeutic effects on COVID-19, providing a holistic view for further clinical application.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Simulación por Computador , Redes Reguladoras de Genes/efectos de los fármacos , Marcación de Gen , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA